

Certificates of positivity and polynomial minimization in the multivariate Bernstein basis

Richard Leroy

IRMAR - Université de Rennes 1

Notations

Notations

 $f \in \mathbb{R}[X] = \mathbb{R}[X_1, \dots, X_k]$ of degree d

Notations

- $f \in \mathbb{R}[X] = \mathbb{R}[X_1, \dots, X_k]$ of degree d
- non degenerate simplex $V = \text{Conv}[V_0, \dots, V_k] \subset \mathbb{R}^k$

Notations

- $f \in \mathbb{R}[X] = \mathbb{R}[X_1, \dots, X_k]$ of degree d
- lacksquare non degenerate simplex $V = \operatorname{\mathsf{Conv}}\left[V_0,\ldots,V_k
 ight] \subset \mathbb{R}^k$
- barycentric coordinates λ_i (i = 0, ..., k):
 - polynomials of degree 1
 - $\sum \lambda_i = 1$
 - $\mathbf{x} \in V \Leftrightarrow \forall i, \ \lambda_i(\mathbf{x}) \geq 0$

Example: standard simplex

$$\Delta = \{ x \in \mathbb{R}^k \mid \forall i, x_i \ge 0 \text{ et } \sum x_i = 1 \}$$

$$x \ge 0$$
$$1 - x \ge 0$$

$$x \ge 0$$

$$y \ge 0$$

$$1 - x - y > 0$$

$$x \ge 0$$

$$y \ge 0$$

$$z \ge 0$$

$$1 - x - y - z \ge 0$$

Questions

■ Decide if f is positive on V (or not)

- \blacksquare Decide if f is positive on V (or not)
- Obtain a simple proof

- Decide if f is positive on V (or not)
- Obtain a simple proof

- Decide if f is positive on V (or not)
- Obtain a simple proof

 certificate of positivity
- Compute the minimum of f over V (and localize the minimizers)

- Decide if f is positive on V (or not)
- Obtain a simple proof
- Compute the minimum of f over V (and localize the minimizers)

- Decide if f is positive on V (or not)
- Obtain a simple proof
- lacksquare Compute the minimum of f over V (and localize the minimizers)
 - ⇔ epidemiology problems

Outline

- 1 Multivariate Bernstein basis
- 2 Standard triangulation
- 3 Control polytope : approximation and convergence
- 4 Certificates of positivity
- 5 Polynomial minimization

- 1 Multivariate Bernstein basis
- 2 Standard triangulation
- 3 Control polytope: approximation and convergence
- 4 Certificates of positivity
- 5 Polynomial minimization

Bernstein polynomials

Notations

- multi-index $\alpha = (\alpha_0, \dots, \alpha_k) \in \mathbb{N}^{k+1}$
- $|\alpha| = \alpha_0 + \cdots + \alpha_k = d$
- multinomial coefficient $\binom{d}{\alpha} = \frac{d!}{\alpha_0! \dots \alpha_k!}$

Bernstein polynomials

Notations

- multi-index $\alpha = (\alpha_0, \dots, \alpha_k) \in \mathbb{N}^{k+1}$
- $|\alpha| = \alpha_0 + \cdots + \alpha_k = d$
- multinomial coefficient $\binom{d}{\alpha} = \frac{d!}{\alpha_0! \dots \alpha_k!}$

Bernstein polynomials of degree d with respect to V

$$B_{\alpha}^{d} = \binom{d}{\alpha} \lambda^{\alpha} = \binom{d}{\alpha} \lambda_{0}^{\alpha_{0}} \dots \lambda_{k}^{\alpha_{k}}.$$

Bernstein polynomials

Notations

- multi-index $\alpha = (\alpha_0, \dots, \alpha_k) \in \mathbb{N}^{k+1}$
- $|\alpha| = \alpha_0 + \cdots + \alpha_k = d$
- multinomial coefficient $\binom{d}{\alpha} = \frac{d!}{\alpha_0! \dots \alpha_k!}$

Bernstein polynomials of degree d with respect to V

$$B_{\alpha}^{d} = {d \choose \alpha} \lambda^{\alpha} = {d \choose \alpha} \lambda_{0}^{\alpha_{0}} \dots \lambda_{k}^{\alpha_{k}}.$$

Appear naturally in the expansion

$$1 = 1^d = (\lambda_0 + \dots + \lambda_k)^d = \sum_{|\alpha| = d} {d \choose \alpha} \lambda^{\alpha} = \sum_{|\alpha| = d} B_{\alpha}^d.$$

 \blacksquare nonnegative on V

- \blacksquare nonnegative on V
- basis of $\mathbb{R}_{\leq d}[X]$

- nonnegative on *V*
- basis of $\mathbb{R}_{\leq d}[X]$

→ Bernstein coefficients:

$$f = \sum_{|\alpha|=d} b_{\alpha}(f, d, V) B_{\alpha}^{d}$$
.

■ b(f, d, V): list of coefficients $b_{\alpha} = b_{\alpha}(f, d, V)$

■ Gréville grid : points
$$N_{\alpha} = \frac{\alpha_0 V_0 + \cdots + \alpha_k V_k}{d}$$

- Gréville grid : points $N_{\alpha} = \frac{\alpha_0 V_0 + \cdots + \alpha_k V_k}{d}$
- Control net : points (N_{α}, b_{α})

- Gréville grid : points $N_{\alpha} = \frac{\alpha_0 V_0 + \cdots + \alpha_k V_k}{d}$
- Control net : points (N_{α}, b_{α})
- Discrete graph of f: points $(N_{\alpha}, f(N_{\alpha}))$

- Gréville grid : points $N_{\alpha} = \frac{\alpha_0 V_0 + \cdots + \alpha_k V_k}{d}$
- Control net : points (N_{α}, b_{α})
- Discrete graph of f: points $(N_{\alpha}, f(N_{\alpha}))$

■ Linear precision

If
$$d \leq 1$$
: $b_{\alpha} = f(N_{\alpha})$

■ Linear precision

If
$$d \leq 1 : b_{\alpha} = f(N_{\alpha})$$

Interpolation at vertices

$$b_{de_i} = f(V_i)$$

■ Linear precision

If
$$d \leq 1 : b_{\alpha} = f(N_{\alpha})$$

Interpolation at vertices

$$b_{de_i} = f(V_i)$$

■ What about the other coefficients when $d \ge 2$?

■ Linear precision

If
$$d \leq 1 : b_{\alpha} = f(N_{\alpha})$$

■ Interpolation at vertices

$$b_{de_i} = f(V_i)$$

■ What about the other coefficients when $d \ge 2$?

 \hookrightarrow bound on the gap between $f(N_{\alpha})$ and b_{α}

- 1 Multivariate Bernstein basis
- 2 Standard triangulation
- 3 Control polytope: approximation and convergence
- 4 Certificates of positivity
- 5 Polynomial minimization

Kuhn's triangulation of the cube

Kuhn's triangulation of the cube

■ Goal : Triangulate the unit cube $C = [0, 1]^k$.

Kuhn's triangulation of the cube

- Goal : Triangulate the unit cube $C = [0,1]^k$.
- Idea : $\forall \sigma \in \mathfrak{S}_k$, consider the simplex $V^{\sigma} = [V_0^{\sigma}, \dots, V_k^{\sigma}]$ defined as follows :

$$V_0^{\sigma} = (0, \dots, 0)$$

$$V_i^{\sigma} = e_{\sigma(1)} + \dots + e_{\sigma(i)} \qquad (1 \le i \le k).$$

- Goal : Triangulate the unit cube $C = [0,1]^k$.
- Idea : $\forall \sigma \in \mathfrak{S}_k$, consider the simplex $V^{\sigma} = [V_0^{\sigma}, \dots, V_k^{\sigma}]$ defined as follows :

$$V_0^{\sigma} = (0,\ldots,0)$$

$$V_i^{\sigma} = e_{\sigma(1)} + \cdots + e_{\sigma(i)} \qquad (1 \leq i \leq k).$$

Result: These simplices form a triangulation of C.

Kuhn's triangulation of the cube In dimension 2 and 3

FIGURE: Kuhn's triangulation in dimension 2

Kuhn's triangulation of the cube In dimension 2 and 3

FIGURE: Kuhn's triangulation in dimension 3

Bernstein basis Standard triangulation Control polytope Certificates of positivity Polynomial minimization

$$V^{\sigma}=[V_0^{\sigma},\ldots,V_k^{\sigma}]$$
 and $V^{\sigma'}=[V_0^{\sigma'},\ldots,V_k^{\sigma'}]$ are adjacent

$$V^\sigma = [V^\sigma_0, \dots, V^\sigma_k]$$
 and $V^{\sigma'} = \left[V^{\sigma'}_0, \dots, V^{\sigma'}_k
ight]$ are adjacent

Kuhn's triangulation of the cube Adjacencies

$$V^{\sigma} = [V_0^{\sigma}, \dots, V_k^{\sigma}]$$
 and $V^{\sigma'} = [V_0^{\sigma'}, \dots, V_k^{\sigma'}]$ are adjacent
$$\updownarrow$$

$$\exists p, \ \sigma'(p) = \sigma(p+1) \text{ and } \sigma'(p+1) = \sigma(p)$$

$$\Downarrow$$

$$V_{p-1}, V_p^{\sigma}, V_p^{\sigma'}, V_{p+1} \text{ form a parallelogram}.$$

$$V = [\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k].$$

■ Goal: Triangulate the simplex

$$V = [\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k].$$

■ Idea:

$$V = [\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k].$$

- Idea :
 - Fix $d \ge 1$ and $F \in \{1, \dots, d\}^{\{1, \dots, k\}}$

$$V = [\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k].$$

- Idea :
 - Fix $d \ge 1$ and $F \in \{1, ..., d\}^{\{1,...,k\}}$
 - Reorder the images of F into f_1, \ldots, f_k

$$V = [\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k].$$

- Idea:
 - Fix $d \ge 1$ and $F \in \{1, ..., d\}^{\{1,...,k\}}$
 - Reorder the images of F into f_1, \ldots, f_k
 - Define the vertex $V_0^F = \frac{1}{d} \sum_{\ell=1}^k (f_{\ell+1} f_{\ell})(e_1 + \ldots + e_{\ell})$

$$V = [\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k].$$

- Idea :
 - Fix $d \ge 1$ and $F \in \{1, ..., d\}^{\{1,...,k\}}$
 - Reorder the images of F into f_1, \ldots, f_k
 - Define the vertex $V_0^F = \frac{1}{d} \sum_{\ell=1}^k (f_{\ell+1} f_{\ell}) (e_1 + \ldots + e_{\ell})$
 - Define a permutation $\sigma \in \mathfrak{S}_k$ as follows :

$$\forall j \in \{1, \dots, k\}, \quad \sigma_F(j) = \quad \#\{\ell \in \{1, \dots, k\} \mid F(\ell) < F(j)\} \\ + \quad \#\{\ell \in \{1, \dots, j\} \mid F(\ell) = F(j)\}.$$

■ Goal : Triangulate the simplex

$$V = [\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k].$$

- Idea :
 - Fix d > 1 and $F \in \{1, ..., d\}^{\{1,...,k\}}$
 - Reorder the images of F into f_1, \ldots, f_k
 - Define the vertex $V_0^F = \frac{1}{d} \sum_{\ell=1}^k (f_{\ell+1} f_{\ell}) (e_1 + \ldots + e_{\ell})$
 - Define a permutation $\sigma \in \mathfrak{S}_k$ as follows :

$$\forall j \in \{1, \dots, k\}, \quad \sigma_F(j) = \quad \#\{\ell \in \{1, \dots, k\} \mid F(\ell) < F(j)\}$$

$$+ \quad \#\{\ell \in \{1, \dots, j\} \mid F(\ell) = F(j)\}.$$

Then define the simplex $V^F = V_0^F + \frac{1}{d}V^{\sigma_F} = \left[V_0^F, V_0^F + \frac{e_{\sigma_F(1)}}{d}, \dots, V_0^F + \frac{e_{\sigma_F(1)}}{d} + \dots + \frac{e_{\sigma_F(k)}}{d}\right].$

Bernstein basis Standard triangulation Control polytope Certificates of positivity Polynomial minimization

Standard triangulation of a simplex

Standard triangulation of degree d

■ The collection (V^F) , for all $F \in \{1, \ldots, d\}^{\{1, \ldots, k\}}$, is a triangulation of $\left[\vec{0}, e_1, e_1 + e_2, \ldots, e_1 + e_2 + \cdots + e_k\right]$.

Standard triangulation of degree d

- The collection (V^F) , for all $F \in \{1, \dots, d\}^{\{1, \dots, k\}}$, is a triangulation of $\left[\vec{0}, e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_k\right]$.
- The standard triangulation $T_d(V)$ of degree d of any simplex $V \subset \mathbb{R}^k$ is then obtained by affine transformation.

Standard triangulation of a simplex In dimension 2, degree 2

Standard triangulation of a simplex In dimension 3, degree 2

Standard triangulation of a simplex In dimension 3, degree 2

Standard triangulation of a simplex In dimension 3, degree 2

Bernstein basis Standard triangulation Control polytope Certificates of positivity Polynomial minimization

Standard triangulation of a simplex of degree 2^N

Standard triangulation of a simplex of degree 2^N

■ Important property : $\ll T_d(T_\ell(V)) = T_{d\ell}(V) \gg$

Standard triangulation of a simplex of degree 2^N

- Important property : $\ll T_d(T_\ell(V)) = T_{d\ell}(V) \gg T_{d\ell}(V)$
- Here, we will consider standard triangulations of degree 2^N as consecutive standard triangulations of degree 2.

- 1 Multivariate Bernstein basis
- 2 Standard triangulation
- 3 Control polytope : approximation and convergence
- 4 Certificates of positivity
- 5 Polynomial minimization

Control polytope

Definition

Let f be a polynomial of degree d, and V a simplex. The control polytope associated to f and V is the unique continuous function \hat{f} , piecewise linear over each simplex of the standard triangulation of degree d of V and satisfaying the following interpolation property :

$$\forall |\alpha| = d, \ \hat{f}(N_{\alpha}) = b_{\alpha}.$$

Bernstein basis Standard triangulation Control polytope Certificates of positivity Polynomial minimization

Control polytope Convexity property

Control polytope Convexity property

Theorem

The following are equivalent:

- (i) The control polytope \hat{f} is convex.
- $(ii) \ \forall |\gamma| = d-2, \ \forall \ 0 \le i < j \le k,$

$$\underbrace{b_{\gamma + e_i + e_{j-1}} + b_{\gamma + e_{i-1} + e_j} - b_{\gamma + e_i + e_j} - b_{\gamma + e_{i-1} + e_{j-1}}}_{\Delta_2 b_{\gamma, i, j}(f, d, V)} \ge 0.$$

Control polytope Convexity property

Theorem

The following are equivalent:

- (i) The control polytope \hat{f} is convex.
- $(ii) \ \forall |\gamma| = d-2, \ \forall \ 0 \le i < j \le k,$

$$\underbrace{b_{\gamma + e_i + e_{j-1}} + b_{\gamma + e_{i-1} + e_j} - b_{\gamma + e_i + e_j} - b_{\gamma + e_{i-1} + e_{j-1}}}_{\Delta_2 b_{\gamma, i, j}(f, d, V)} \ge 0.$$

 $\triangle_2 b_{\gamma,i,j}(f,d,V)$: second differences

Control polytope Convexity property

Theorem

The following are equivalent:

- (i) The control polytope \hat{f} is convex.
- $(ii) \ \forall |\gamma| = d-2, \ \forall \ 0 \le i < j \le k,$

$$\underbrace{b_{\gamma + e_i + e_{j-1}} + b_{\gamma + e_{i-1} + e_j} - b_{\gamma + e_i + e_j} - b_{\gamma + e_{i-1} + e_{j-1}}}_{\Delta_2 b_{\gamma, i, j}(f, d, V)} \ge 0.$$

- $\Delta_2 b_{\gamma,i,i}(f,d,V)$: second differences

Bernstein basis Standard triangulation Control polytope Certificates of positivity Polynomial minimization

Control polytope Approximation

Control polytope Approximation

Theorem ('08)

$$\max_{|\alpha|=d}|f(N_{\alpha})-b_{\alpha}|\leq \frac{k(k+2)}{24}d\|\Delta_{2}b(f,d,V)\|_{\infty}.$$

Control polytope Approximation

Theorem ('08)

$$\max_{|\alpha|=d}|f(N_{\alpha})-b_{\alpha}|\leq \frac{k(k+2)}{24}d\|\Delta_{2}b(f,d,V)\|_{\infty}.$$

■ The bound is sharp.

Control polytope Approximation

Theorem ('08)

$$\max_{|\alpha|=d} |f(N_{\alpha}) - b_{\alpha}| \leq \frac{k(k+2)}{24} d\|\Delta_2 b(f,d,V)\|_{\infty}.$$

- The bound is sharp.
- Nairn et al. ('99) : bound $(d/8) \|\Delta_2 b\|_{\infty}$ when k = 1.

Control polytope Approximation

Theorem ('08)

$$\max_{|\alpha|=d} |f(N_{\alpha}) - b_{\alpha}| \leq \frac{k(k+2)}{24} d\|\Delta_2 b(f,d,V)\|_{\infty}.$$

- The bound is sharp.
- Nairn et al. ('99) : bound $(d/8) \|\Delta_2 b\|_{\infty}$ when k = 1.
- Reif ('00) : bound $(d/3) \|\Delta_2 b\|_{\infty}$ when k = 2.

Bernstein basis Standard triangulation Control polytope Certificates of positivity Polynomial minimization

Control polytope Convergence under degree elevation

Control polytope Convergence under degree elevation

Theorem ('08)

Let $f \in \mathbb{R}[X]$ of degree d, over the standard simplex Δ . Let $N \geq 1$. Then :

$$\max_{|\alpha|=2^{N}d} \left| f\left(\frac{\alpha_{1}}{2^{N}d}, \dots, \frac{\alpha_{k}}{2^{N}d}\right) - b_{\alpha}(f, 2^{N}d, \Delta) \right|$$

$$\leq \frac{k(k+2)}{24} \frac{d(d-1)}{2^{N}d-1} \left\| \Delta_{2}b(f, d, \Delta) \right\|_{\infty}.$$

Bernstein basis Standard triangulation Control polytope Certificates of positivity Polynomial minimization

Control polytope Convergence under subdivision

Control polytope Convergence under subdivision

Theorem ('08)

Let $f \in \mathbb{R}[X]$ of degree d, over the standard simplex Δ . Let $U \in T_{2^N}(\Delta)$ $(N \ge 1)$. Then :

$$\max_{|\alpha|=d} |f(N_{\alpha}) - b_{\alpha}(f, d, U)|$$

$$\leq \left(\frac{k(k+2)}{24}\right)^{2} \frac{dk(k+1)(k+3)}{2^{2N}} \left\|\Delta_{2}b(f, d, \Delta)\right\|_{\infty}.$$

- 1 Multivariate Bernstein basis
- 2 Standard triangulation
- 3 Control polytope: approximation and convergence
- 4 Certificates of positivity
- 5 Polynomial minimization

■ Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$

- Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$
- Certificate of positivity: Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)

- Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$
- Certificate of positivity : Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)
- Here:

Certificate of positivity in the Bernstein basis

$$Cert(f,d,\Delta): \begin{cases} \forall |\alpha|=d, & b_{\alpha}\geq 0 \\ \forall i=0,\ldots,k, & b_{de_i}>0 \end{cases} \Rightarrow f>0 \text{ on } \Delta$$

- Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$
- Certificate of positivity : Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)
- Here:

Certificate of positivity in the Bernstein basis

$$Cert(f,d,\Delta): \begin{cases} \forall |\alpha|=d, & b_{\alpha}\geq 0 \\ \forall i=0,\ldots,k, & b_{de_i}>0 \end{cases} \Rightarrow f>0 \text{ on } \Delta$$

■ Warning: The converse is false in general!

- Assume the positivity of f on Δ : $m = \min_{\Delta} f > 0$
- Certificate of positivity : Algebraic identity expressing f as a trivially positive polynomial on Δ (one-sentence proof)
- Here :

Certificate of positivity in the Bernstein basis

$$\mathit{Cert}(f,d,\Delta): \left\{ egin{array}{ll} \forall |\alpha| = d, & b_{lpha} \geq 0 \ \forall i = 0,\ldots,k, & b_{de_i} > 0 \end{array}
ight. \Rightarrow f > 0 \ \mathsf{on} \ \Delta$$

- Warning : The converse is false in general!
 - $f = 6x^2 6x + 2 > 0$ on [0, 1], but b(f, 2, [0, 1]) = [2, -1, 2].

- 4 Certificates of positivity
 - By degree elevation
 - By subdivision

Certificates of positivity by degree elevation

Idea: Express f in the Bernstein basis of increasing degree.

Theorem ('08)

$$2^{N} > \frac{k(k+2)}{24}(d-1)\frac{\|\Delta_{2}b(f,d,\Delta)\|_{\infty}}{m} \Rightarrow Cert(f,2^{N}d,\Delta).$$

Certificates of positivity by degree elevation

Idea: Express f in the Bernstein basis of increasing degree.

Theorem ('08)

$$2^{N}>\frac{k(k+2)}{24}(d-1)\frac{\|\Delta_{2}b(f,d,\Delta)\|_{\infty}}{m}\Rightarrow \textit{Cert}(f,2^{N}d,\Delta).$$

Certificates of positivity by degree elevation

Idea: Express f in the Bernstein basis of increasing degree.

Theorem ('08)

$$2^N > \frac{k(k+2)}{24}(d-1)\frac{\|\Delta_2 b(f,d,\Delta)\|_{\infty}}{m} \Rightarrow Cert(f,2^N d,\Delta).$$

Powers, Reznick ('03)

$$2^{N} > \frac{(d-1)}{2} \frac{\max\limits_{|\alpha|=d} |b_{\alpha}(f,d,\Delta)|}{m}$$

 $\Rightarrow Cert(f,2^{N}d,\Delta).$

- 4 Certificates of positivity
 - By degree elevation
 - By subdivision

Idea: Keep the degree constant, and subdivide Δ .

Tool: successive standard triangulations of degree 2.

Theorem ('08)

$$2^{N} > \frac{k(k+2)}{24} \sqrt{dk(k+1)(k+3)} \sqrt{\frac{\|\Delta_{2}b(f,d,\Delta)\|_{\infty}}{m}}$$

 $\Rightarrow \forall U \in T_{2^N}(\Delta), \ Cert(f, d, U) \text{ holds.}$

Advantages:

 \blacksquare the process is adaptive to the geometry of f

Advantages:

 \blacksquare the process is adaptive to the geometry of f

- \blacksquare the process is adaptive to the geometry of f
- smaller size of certificates

- \blacksquare the process is adaptive to the geometry of f
- smaller size of certificates
- **better interpolation** (ex : $25x^2 + 16y^2 40xy 30x + 24y + 10$)

- \blacksquare the process is adaptive to the geometry of f
- smaller size of certificates
- **b**etter interpolation (ex : $25x^2 + 16y^2 40xy 30x + 24y + 10$)

The process stops:

Theorem

There exists an explicit $m_{k,d,\tau} > 0$ such that if f has degree $\leq d$ and the bitsize of its coefficients is bounded by τ , then

$$f > m_{k,d,\tau}$$
 on Δ .

- 1 Multivariate Bernstein basis
- 2 Standard triangulation
- 3 Control polytope: approximation and convergence
- 4 Certificates of positivity
- 5 Polynomial minimization

Enclosing property

Let m denote the minimum of f over the standard simplex Δ .

Goal: Enclose m with an arbitrary precision.

Enclosing property

If V is a simplex, and m_V the minimum of f over V, then :

$$m_V \in [s_V, t_V],$$

where
$$\left\{ egin{aligned} s_V &= \min b_lpha = b_eta & ext{for some } eta \ t_V &= \min[f\left(N_eta
ight), \underbrace{b_{de_i}}_{=f\left(V_i
ight)}, i = 0, \dots, k] \end{aligned}
ight.$$

Steps:

Steps:

■ Subdivide : $\Delta = V^1 \cup \cdots \cup V^s$.

Steps:

- Subdivide : $\Delta = V^1 \cup \cdots \cup V^s$.
- \blacksquare Remove the simplices over which f is trivially too big.

Steps:

- Subdivide : $\Delta = V^1 \cup \cdots \cup V^s$.
- \blacksquare Remove the simplices over which f is trivially too big.
- Loop until on each subsimplex V^i , we have :

$$t_{V^i} - s_{V^i} < \varepsilon,$$

where ε is the aimed precision.

Steps:

- Subdivide : $\Delta = V^1 \cup \cdots \cup V^s$.
- \blacksquare Remove the simplices over which f is trivially too big.
- Loop until on each subsimplex V^i , we have :

$$t_{V^i} - s_{V^i} < \varepsilon$$
,

where ε is the aimed precision.

Tool: Successive standard triangulations of degree 2.

The process stops:

Theorem ('08)

If
$$2^{N} > \frac{k(k+2)}{24} \sqrt{dk(k+1)(k+3)} \sqrt{\frac{\|\Delta_2 b(f,d,\Delta)\|_{\infty}}{\varepsilon}}$$
,

then at most N steps of subdivision are needed.

Algorithms

■ Future work

- Algorithms
 - Certified

■ Future work

- Algorithms
 - Certified
 - Bound on arithmetic complexity
- Future work

- Algorithms
 - Certified vs. numerical algorithms (PTAS, SDP)
 - Bound on arithmetic complexity
- Future work

Algorithms

- Certified vs. numerical algorithms (PTAS, SDP)
- Bound on arithmetic complexity

■ Future work

 Better bounds on the complexity (as in the univariate case and the multivariate box case)

Algorithms

- Certified vs. numerical algorithms (PTAS, SDP)
- Bound on arithmetic complexity
- Implemented in Maple, Maxima

■ Future work

 Better bounds on the complexity (as in the univariate case and the multivariate box case)

Algorithms

- Certified vs. numerical algorithms (PTAS, SDP)
- Bound on arithmetic complexity
- Implemented in Maple, Maxima

■ Future work

- Better bounds on the complexity (as in the univariate case and the multivariate box case)
- Implementation on Mathemagix

Algorithms

- Certified vs. numerical algorithms (PTAS, SDP)
- Bound on arithmetic complexity
- Implemented in Maple, Maxima

■ Future work

- Better bounds on the complexity (as in the univariate case and the multivariate box case)
- Implementation on Mathemagix
- Certificates of non-negativity