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Motivation

Notations

f ∈ R[X ] = R[X1, . . . ,Xk ] of degree d

non degenerate simplex V = Conv [V0, . . . ,Vk ] ⊂ Rk

barycentric coordinates λi (i = 0, . . . , k) :

polynomials of degree 1∑
λi = 1

x ∈ V ⇔ ∀i , λi (x) ≥ 0
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Motivation

Example : standard simplex

∆ = {x ∈ Rk | ∀i , xi ≥ 0 et
∑

xi = 1}

x ≥ 0

1− x ≥ 0

x ≥ 0

y ≥ 0

1− x− y ≥ 0

x ≥ 0

y ≥ 0

z ≥ 0

1− x− y − z ≥ 0
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Motivation

Questions

Decide if f is positive on V (or not)

Obtain a simple proof

↪→ certificate of positivity

Compute the minimum of f over V (and localize the
minimizers)
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Outline

1 Multivariate Bernstein basis

2 Certificates of positivity

3 Polynomial minimization
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Bernstein polynomials

Notations
multi-index α = (α0, . . . , αk) ∈ Nk+1

|α| = α0 + · · ·+ αk = d

multinomial coefficient
(
d
α

)
=

d !

α0! . . . αk !

Bernstein polynomials of degree d with respect to V

Bd
α =

(
d

α

)
λα =

(
d

α

)
λ0

α0 . . . λk
αk .

Appear naturally in the expansion

1 = 1d = (λ0 + · · ·+ λk)d =
∑
|α|=d

(
d

α

)
λα =

∑
|α|=d

Bd
α .
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Properties

nonnegative on V

basis of R≤d [X ]

↪→ Bernstein coefficients :

f =
∑
|α|=d

bα(f , d ,V )Bd
α .

b(f , d ,V ) : list of coefficients bα = bα(f , d ,V )
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Control net

Gréville grid : points Nα =
α0V0 + · · ·+ αkVk

d
Control net : points (Nα, bα)
Discrete graph of f : points (Nα, f (Nα))

Graph of f

Control points

Gréville points

0 1
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Interpolation properties

Linear precision

If d ≤ 1 : bα = f (Nα)

Interpolation at vertices

bdei
= f (Vi)

What about the other coefficients when d ≥ 2 ?

↪→ bound on the gap between f (Nα) and bα
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Gap control net / discrete graph of f

Theorem (08’)

The gap between the control net and the discrete graph of f is
bounded by

dk(k + 2)

24

∥∥∆2b(f , d ,V )
∥∥
∞︸ ︷︷ ︸ .

||
max
|γ| = d − 2

0 ≤ i < j ≤ k

| bγ+ei +ej−1
+ bγ+ei−1+ej

− bγ+ei +ej
− bγ+ei−1+ej−1︸ ︷︷ ︸

second differences

|

The bound is sharp (attained by a quadratic form).
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1 Multivariate Bernstein basis

2 Certificates of positivity

3 Polynomial minimization
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Certificates of positivity

Assume the positivity of f on ∆ : m = min
∆

f > 0

Certificate of positivity :
Algebraic identity expressing f as a trivially positive
polynomial on ∆ (one-sentence proof)

Here :

Certificate of positivity in the Bernstein basis

If b(f , d ,∆) > 0, then f > 0 on ∆.

Warning : The converse is false in general !

f = 6x2 − 6x + 2 > 0 on [0, 1], but
b(f , 2, [0, 1]) = [2,−1, 2].
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2 Certificates of positivity
By degree elevation
By subdivision
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Certificates of positivity
by degree elevation

Idea : Express f in the Bernstein basis of degree D ≥ d , with
D getting bigger and bigger.

If D is big enough, then b(f , d ,∆) > 0.

Theorem (’08)

D >
d(d − 1)k(k + 2)

24m

∥∥∆2b(f , d ,∆)
∥∥
∞ ⇒ b(f ,D,∆) > 0.
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Certificates of positivity
by subdivision

Idea : Keep the degree constant, and subdivide the simplex ∆.

Tool : successive standard triangulations of degree 2.

If the subdivision is refined enough, then on each subsimplex
V i , b(f , d ,V i) > 0.

Theorem (’08)

If 2N >
k(k + 2)

24
√

m

√
dk(k + 1)(k + 3) ‖∆2b(f , d ,∆)‖∞,

then, after N steps of subdivision, b(f ,D,V i) > 0 on each V i .
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Certificates of positivity
by subdivision

Advantages :

the process is adaptive to the geometry of f
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Certificates of positivity
by subdivision

Advantages :

the process is adaptive to the geometry of f
smaller size of certificates

better interpolation (ex : 25x2 + 16y2 − 40xy − 30x + 24y + 10)

153 control points

3 vertices

3 degree doublings 3 steps of subdivision

40 control points

14 vertices
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Certificates of positivity
by subdivision

The process stops :

Theorem (’08)

There exists an explicit (computable) mk,d ,τ > 0 such that if f
has degree ≤ d and the bitsize of its coefficients is bounded by
τ , then

f > mk,d ,τ on ∆.
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1 Multivariate Bernstein basis

2 Certificates of positivity

3 Polynomial minimization
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Enclosing property

Let m denote the minimum of f over the standard simplex ∆.

Goal : Enclose m with an arbitrary precision.

Enclosing property

If V is a simplex, and mV the minimum of f over V , then :

mV ∈ [sV , tV ],

where


sV = min bα = bβ for some β

tV = min[f (Nβ) , bdei︸︷︷︸
=f (Vi )

, i = 0, . . . , k]
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Algorithm

Steps :

Subdivide : ∆ = V 1 ∪ · · · ∪ V s .

Remove the simplices over which f is trivially too big

Loop until on each subsimplex V i , we have :

tV i − sV i < ε,

where ε is the aimed precision.

Tool : Successive standard triangulations of degree 2.
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Algorithm

We have a bound on the complexity :

Theorem (’08)

If 2N >
k(k + 2)

24
√
ε

√
dk(k + 1)(k + 3) ‖∆2b(f , d ,∆)‖∞,

then at most N steps of subdivision are needed.
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Conclusion

Algorithms

certified

bound on the complexity

implemented (in Maple, Maxima)

Future work

better complexity (as in the univariate case and the
multivariate box case)
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Conclusion

Algorithms

certified

bound on the complexity

implemented (in Maple, Maxima)

Future work

better complexity (as in the univariate case and the
multivariate box case)

Sage ?
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Conclusion

Algorithms

certified

bound on the complexity

implemented (in Maple, Maxima)

Future work

better complexity (as in the univariate case and the
multivariate box case)

Mathemagix !
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Coffee break !

Thank you !
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