Nonnegative polynomials modulo their gradient ideal

About the article "Minimizing Polynomials via Sum of Squares over the Gradient Ideal" from Demmel, Nie and Sturmfels.

Richard Leroy

6th May 2005 Universität Konstanz Nonnegative polynomials modulo their gradient ideal

Plai

Introduction

Polynomials over heir gradient varieties

Unconstrained

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

What's next?

Nonnegative polynomials modulo their gradient ideal

Plan

Introduction

Polynomials over heir gradient varieties

Unconstrained optimization

Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

Goal : Use semidefinite programming (SDP) to solve the problem of minimizing a real polynomial over ℝⁿ. Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Goal : Use semidefinite programming (SDP) to solve the problem of minimizing a real polynomial over ℝⁿ.

▶ Idea : If $u \in \mathbb{R}^n$ is a minimizer of a polynomial $f \in \mathbb{R}[X] := \mathbb{R}[X_1, ..., X_n]$, then $\nabla f(u) = 0$, i.e.

$$\forall i=1,\ldots,n, \ \frac{\partial f}{\partial x_i}(u)=0$$

Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Goal : Use semidefinite programming (SDP) to solve the problem of minimizing a real polynomial over ℝⁿ.

▶ Idea : If $u \in \mathbb{R}^n$ is a minimizer of a polynomial $f \in \mathbb{R}[X] := \mathbb{R}[X_1, ..., X_n]$, then $\nabla f(u) = 0$, i.e.

$$\forall i=1,\ldots,n, \ \frac{\partial f}{\partial x_i}(u)=0$$

Nonnegative polynomials modulo their gradient ideal

Plai

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

What's next?

► Tools :

► Goal : Use semidefinite programming (SDP) to solve the problem of minimizing a real polynomial over ℝⁿ.

▶ Idea : If $u \in \mathbb{R}^n$ is a minimizer of a polynomial $f \in \mathbb{R}[X] := \mathbb{R}[X_1, ..., X_n]$, then $\nabla f(u) = 0$, i.e.

$$\forall i=1,\ldots,n, \ \frac{\partial f}{\partial x_i}(u)=0$$

► Tools :

 (Real) algebraic geometry : Sos representation of a nonnegative polynomial modulo its gradient ideal Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Goal : Use semidefinite programming (SDP) to solve the problem of minimizing a real polynomial over ℝⁿ.

▶ Idea : If $u \in \mathbb{R}^n$ is a minimizer of a polynomial $f \in \mathbb{R}[X] := \mathbb{R}[X_1, ..., X_n]$, then $\nabla f(u) = 0$, i.e.

$$\forall i=1,\ldots,n, \ \frac{\partial f}{\partial x_i}(u)=0$$

► Tools :

- (Real) algebraic geometry : Sos representation of a nonnegative polynomial modulo its gradient ideal
- SDP : duality theory (sos representation / moment approach)

Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Notations :

Nonnegative polynomials modulo their gradient ideal

Plai

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

Notations :

Gradient varieties :

$$V_{grad}(f) := \{ u \in \mathbb{C}^n : \nabla f(u) = 0 \} \subset \mathbb{C}^n$$
$$V_{grad}^{\mathbb{R}}(f) := \{ u \in \mathbb{R}^n : \nabla f(u) = 0 \} \subset \mathbb{R}^n$$

► Gradient ideal :

$$I_{grad}(f) := \langle \nabla f(X) \rangle = \left\langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right\rangle \subset \mathbb{R}[X]$$

Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Notations :

► Gradient varieties :

$$V_{grad}(f) := \{ u \in \mathbb{C}^n : \nabla f(u) = 0 \} \subset \mathbb{C}^n$$
$$V_{grad}^{\mathbb{R}}(f) := \{ u \in \mathbb{R}^n : \nabla f(u) = 0 \} \subset \mathbb{R}^n$$

► Gradient ideal :

$$I_{grad}(f) := \langle \nabla f(X) \rangle = \left\langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right\rangle \subset \mathbb{R}[X]$$

► Theorem 1

$$\left\{ f \geq 0 \text{ on } V^{\mathbb{R}}_{grad}(f) \\ I_{grad}(f) \text{ radical}
ight\} \Rightarrow f \text{ sos modulo } I_{grad}(f):$$

$$\exists q_i, \phi_j \in \mathbb{R}[X], \ f = \sum_{i=1}^s q_i^2 + \sum_{j=1}^n \phi_j \frac{\partial f}{\partial x_j}$$

Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

Proof

The proof is based on the following two lemmas :

Nonnegative polynomials modulo their gradient ideal

Plai

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

Proof

The proof is based on the following two lemmas :

▶ lemma 1.1

 V_1, \ldots, V_r pairwise disjoint varieties in \mathbb{C}^n \Downarrow $\exists p_1, \ldots, p_r \in \mathbb{R}[X], \forall i, j, \ p_i(V_j) = \delta_{ij}$ Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

Proof

The proof is based on the following two lemmas :

▶ lemma 1.1

 V_1, \ldots, V_r pairwise disjoint varieties in \mathbb{C}^n \Downarrow $\exists p_1, \ldots, p_r \in \mathbb{R}[X], \forall i, j, \ p_i(V_i) = \delta_{ij}$

lemma 1.2

W irreducible subvariety of $V_{grad}(f)$ s.t. $W \cap \mathbb{R}^n \neq \emptyset$ \Downarrow $f \equiv \text{ const on } W$ Nonnegative polynomials modulo their gradient ideal

Plar

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

In case $I_{grad}(f)$ is not radical

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

In case $I_{grad}(f)$ is not radical

$$f(x, y, z) := x^{8} + y^{8} + z^{8} + \underbrace{x^{4}y^{2} + x^{2}y^{4} + z^{6} - 3x^{2}y^{2}z^{2}}_{\text{New View of }}$$

Motzkin polynomial M(x,y,z)

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

In case $I_{grad}(f)$ is not radical

$$f(x, y, z) := x^{8} + y^{8} + z^{8} + \underbrace{x^{4}y^{2} + x^{2}y^{4} + z^{6} - 3x^{2}y^{2}z^{2}}_{\text{Motzkin polynomial } M(x, y, z)}$$

• Fact 1 :
$$f \equiv \frac{1}{4}M \pmod{I_{grad}(f)}$$

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

In case $I_{grad}(f)$ is not radical

$$f(x, y, z) := x^{8} + y^{8} + z^{8} + \underbrace{x^{4}y^{2} + x^{2}y^{4} + z^{6} - 3x^{2}y^{2}z^{2}}_{\text{Motzkin polynomial } M(x, y, z)}$$

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

In case $I_{grad}(f)$ is not radical

$$f(x, y, z) := x^{8} + y^{8} + z^{8} + \underbrace{x^{4}y^{2} + x^{2}y^{4} + z^{6} - 3x^{2}y^{2}z^{2}}_{\text{Motzkin polynomial } M(x, y, z)}$$

Fact 1 :
$$f \equiv \frac{1}{4}M \pmod{I_{grad}(f)}$$

Fact 2 : *M* is not a sos in
$$\mathbb{R}[x, y, z]/_{l_{grad}}(f)$$

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

In case $I_{grad}(f)$ is not radical

$$f(x, y, z) := x^{8} + y^{8} + z^{8} + \underbrace{x^{4}y^{2} + x^{2}y^{4} + z^{6} - 3x^{2}y^{2}z^{2}}_{\text{Motzkin polynomial } M(x, y, z)}$$

Fact 1 :
$$f \equiv \frac{1}{4}M \pmod{I_{grad}(f)}$$

Fact 2 : *M* is not a sos in
$$\mathbb{R}[x, y, z]/I_{grad}(f)$$

Fact 3 : Ask Claus Scheiderer for more details

► Theorem 2

$$f > 0$$
 on $V_{grad}^{\mathbb{R}}(f) \Rightarrow f$ sos modulo $I_{grad}(f)$

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Notations :

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Notations :

• $\deg(f) = d$ even

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Notations :

•
$$\deg(f) = d$$
 even
• $f_i := \frac{\partial f}{\partial x_i}$

Nonnegative polynomials modulo their gradient ideal

Plai

Introduction

Polynomials over heir gradient varieties

Unconstrained optimization

► Notations :

where
$$\nu_{n,k} = \begin{pmatrix} n+k \\ k \end{pmatrix}$$

Nonnegative polynomials modulo their gradient ideal

Plai

ntroduction

Polynomials over heir gradient varieties

Unconstrained optimization

► Notations :

where
$$\nu_{n,k} = \begin{pmatrix} n+k \\ k \end{pmatrix}$$

 $\forall N, mon_N(x) = {}^t(1, x_1, \dots, x_n, x_1^2, x_1x_2, \dots, x_n^N) \in \mathbb{R}^{\nu_{n,N}}$

Nonnegative polynomials modulo their gradient ideal

Plai

ntroduction

Polynomials over heir gradient varieties

Unconstrained optimization

► Notations :

$$\forall N, \ mon_N(x) = {}^t(1, x_1, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^N) \in \mathbb{R}^{\nu_n, N}$$

▶ Restrictive hypothesis (*H*) :

f attains its infimum f^* over \mathbb{R}^n

Nonnegative polynomials modulo their gradient ideal

Plar

ntroduction

Polynomials over heir gradient varieties

Unconstrained optimization

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

▶ Primal SDP : moment formulation

$$(P): \begin{cases} f_{N,mom}^* := \inf_{y} & {}^t fy = \sum f_{\alpha} y_{\alpha} \\ & & \\ s.t. & \begin{cases} \forall i, \ M_{N-\frac{d}{2}}(f_i * y) = 0 \\ & M_N(y) \succeq 0 \\ & & y_0 = 1 \end{cases} \end{cases}$$

Nonnegative polynomials modulo their gradient ideal

Plai

Introduction

Polynomials over heir gradient varieties

Unconstrained optimization

Primal SDP : moment formulation

$$(P): \begin{cases} f_{N,mom}^* := \inf_{y} & {}^t f y = \sum f_{\alpha} y_{\alpha} \\ & & \\ s.t. & \begin{cases} \forall i, \ M_{N-\frac{d}{2}}(f_i * y) = 0 \\ & M_N(y) \succeq 0 \\ & & y_0 = 1 \end{cases} \end{cases}$$

Dual SDP : sos formulation

$$(D): \begin{cases} f_{N,grad}^* := \sup_{\gamma \in R} & \gamma \\ & s.t. & \begin{cases} f - \gamma = \sigma + \sum_{j=1}^n \phi_j \frac{\partial f}{\partial x_j} \\ \sigma \in \sum_j (\mathbb{R}[X]_N)^2 \\ \phi_j \in \mathbb{R}[X]_{2N-d+1} \end{cases} \end{cases}$$

Nonnegative polynomials modulo their gradient ideal

Plar

ntroduction

Polynomials over heir gradient varieties

Unconstrained optimization

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Theorem 3

Under the assumption (H), the following holds :

Nonnegative polynomials modulo their gradient ideal

Plar

ntroduction

Polynomials over their gradient varieties

Unconstrained optimization

► Theorem 3

Under the assumption (H), the following holds :

$$\lim_{N} f_{N,grad}^* = \lim_{N} f_{N,mom}^* = f$$

Nonnegative polynomials modulo their gradient ideal

Plai

Introduction

Polynomials over their gradient varieties

Unconstrained optimization

► Theorem 3

Under the assumption (H), the following holds :

$$\lim_{N} f^*_{N,grad} = \lim_{N} f^*_{N,mom} = f^*$$

►
$$I_{grad}(f)$$
 radical $\Rightarrow \exists N_0, f^*_{N_0,grad} = f^*_{N_0,mom} = f^*$

Nonnegative polynomials modulo their gradient ideal

Plar

ntroduction

Polynomials over their gradient varieties

Unconstrained optimization

► Theorem 3

Under the assumption (H), the following holds :

$$\lim_{N} f_{N,grad}^* = \lim_{N} f_{N,mom}^* = 1$$

►
$$I_{grad}(f)$$
 radical $\Rightarrow \exists N_0, f^*_{N_0,grad} = f^*_{N_0,mom} = f^*$

Extracting solutions

In practice, Lasserre and Henrion's technique : If, for some N, and some optimal primal solution y^* , we have

rank
$$M_N(y^*) = \operatorname{rank} M_{N-d/2}(y^*)$$

then we have reached the global minimum f^* , and one can extract global minimizers (implemented in Gloptipoly).

Nonnegative polynomials modulo their gradient ideal

Plar

ntroduction

Polynomials over their gradient varieties

Unconstrained optimization

What's next?

Nonnegative polynomials modulo their gradient ideal

Pla

Introduction

Polynomials over their gradient varieties

Unconstrained optimization