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◮ Goal : Use semidefinite programming (SDP) to solve the
problem of minimizing a real polynomial over R

n.
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Introduction : motivation and notations

◮ Goal : Use semidefinite programming (SDP) to solve the
problem of minimizing a real polynomial over R

n.

◮ Idea : If u ∈ R
n is a minimizer of a polynomial

f ∈ R[X ] := R[X1, . . . ,Xn], then ∇f (u) = 0, i.e.

∀i = 1, . . . , n,
∂f

∂xi

(u) = 0
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Introduction : motivation and notations

◮ Goal : Use semidefinite programming (SDP) to solve the
problem of minimizing a real polynomial over R

n.

◮ Idea : If u ∈ R
n is a minimizer of a polynomial

f ∈ R[X ] := R[X1, . . . ,Xn], then ∇f (u) = 0, i.e.

∀i = 1, . . . , n,
∂f

∂xi

(u) = 0

◮ Tools :
◮ (Real) algebraic geometry : Sos representation of a

nonnegative polynomial modulo its gradient ideal
◮ SDP : duality theory (sos representation / moment

approach)
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Polynomials over their gradient varieties

◮ Notations :
◮ Gradient varieties :

Vgrad(f ) := {u ∈ C
n : ∇f (u) = 0} ⊂ C

n

V R

grad(f ) := {u ∈ R
n : ∇f (u) = 0} ⊂ R

n

◮ Gradient ideal :

Igrad(f ) := 〈∇f (X )〉 =

〈
∂f

∂x1

, . . . ,
∂f

∂xn

〉

⊂ R[X ]
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◮ Notations :
◮ Gradient varieties :

Vgrad(f ) := {u ∈ C
n : ∇f (u) = 0} ⊂ C

n

V R

grad(f ) := {u ∈ R
n : ∇f (u) = 0} ⊂ R

n

◮ Gradient ideal :

Igrad(f ) := 〈∇f (X )〉 =

〈
∂f

∂x1

, . . . ,
∂f

∂xn

〉

⊂ R[X ]

◮ Theorem 1

f ≥ 0 on V R

grad (f )

Igrad (f ) radical

}

⇒ f sos modulo Igrad (f ) :

∃qi , φj ∈ R[X ], f =
s∑

i=1

q2
i +

n∑

j=1

φj
∂f

∂xj
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The proof is based on the following two lemmas :
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Proof

The proof is based on the following two lemmas :

◮ lemma 1.1

V1, . . . ,Vr pairwise disjoint varieties in C
n

⇓

∃p1, . . . , pr ∈ R[X ],∀i , j , pi (Vj) = δij
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Proof

The proof is based on the following two lemmas :

◮ lemma 1.1

V1, . . . ,Vr pairwise disjoint varieties in C
n

⇓

∃p1, . . . , pr ∈ R[X ],∀i , j , pi (Vj) = δij

◮ lemma 1.2

W irreducible subvariety of Vgrad (f ) s.t. W ∩ R
n 6= ∅

⇓

f ≡ const on W



Nonnegative
polynomials
modulo their
gradient ideal

Plan

Introduction

Polynomials over
their gradient
varieties

Unconstrained
optimization

What’s next ?

In case Igrad(f ) is not radical



Nonnegative
polynomials
modulo their
gradient ideal

Plan

Introduction

Polynomials over
their gradient
varieties

Unconstrained
optimization

What’s next ?

In case Igrad(f ) is not radical

◮ Example :

f (x , y , z) := x8 +y8 +z8 +x4y2 + x2y4 + z6 − 3x2y2z2

︸ ︷︷ ︸

Motzkin polynomial M(x ,y ,z)
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◮ Example :

f (x , y , z) := x8 +y8 +z8 +x4y2 + x2y4 + z6 − 3x2y2z2

︸ ︷︷ ︸

Motzkin polynomial M(x ,y ,z)

◮ Fact 1 : f ≡
1

4
M (mod Igrad(f ))
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◮ Example :

f (x , y , z) := x8 +y8 +z8 +x4y2 + x2y4 + z6 − 3x2y2z2
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Motzkin polynomial M(x ,y ,z)

◮ Fact 1 : f ≡
1

4
M (mod Igrad(f ))

◮ Fact 2 : M is not a sos in R [x , y , z ]/Igrad(f )
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In case Igrad(f ) is not radical

◮ Example :

f (x , y , z) := x8 +y8 +z8 +x4y2 + x2y4 + z6 − 3x2y2z2

︸ ︷︷ ︸

Motzkin polynomial M(x ,y ,z)

◮ Fact 1 : f ≡
1

4
M (mod Igrad(f ))

◮ Fact 2 : M is not a sos in R [x , y , z ]/Igrad(f )
◮ Fact 3 : Ask Claus Scheiderer for more details
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In case Igrad(f ) is not radical

◮ Example :

f (x , y , z) := x8 +y8 +z8 +x4y2 + x2y4 + z6 − 3x2y2z2

︸ ︷︷ ︸

Motzkin polynomial M(x ,y ,z)

◮ Fact 1 : f ≡
1

4
M (mod Igrad(f ))

◮ Fact 2 : M is not a sos in R [x , y , z ]/Igrad(f )
◮ Fact 3 : Ask Claus Scheiderer for more details

◮ Theorem 2

f > 0 on V R

grad (f ) ⇒ f sos modulo Igrad (f )
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Unconstrained optimization

◮ Notations :
◮ deg(f ) = d even

◮ fi :=
∂f

∂xi
◮ ∀k ≥ d , f ∈ R[X ]k : f =

∑
fαxα

! f ∈ R
νn,k

where νn,k =

(
n + k

k

)
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Unconstrained optimization

◮ Notations :
◮ deg(f ) = d even

◮ fi :=
∂f

∂xi
◮ ∀k ≥ d , f ∈ R[X ]k : f =

∑
fαxα

! f ∈ R
νn,k

where νn,k =

(
n + k

k

)

◮ ∀N, monN(x) =
t

(1, x1, . . . , xn, x
2
1 , x1x2, . . . , x

N
n ) ∈ R

νn,N
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Unconstrained optimization

◮ Notations :
◮ deg(f ) = d even

◮ fi :=
∂f

∂xi
◮ ∀k ≥ d , f ∈ R[X ]k : f =

∑
fαxα

! f ∈ R
νn,k

where νn,k =

(
n + k

k

)

◮ ∀N, monN(x) =
t

(1, x1, . . . , xn, x
2
1 , x1x2, . . . , x

N
n ) ∈ R

νn,N

◮ Restrictive hypothesis (H) :

f attains its infimum f ∗ over R
n
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SDP relaxations

◮ Primal SDP : moment formulation

(P) :







f ∗N,mom := inf
y

t fy =
∑

fαyα

s.t.







∀i , M
N−

d

2
(fi ∗ y) = 0

MN(y) � 0
y0 = 1
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SDP relaxations

◮ Primal SDP : moment formulation

(P) :







f ∗N,mom := inf
y

t fy =
∑

fαyα

s.t.







∀i , M
N−

d

2
(fi ∗ y) = 0

MN(y) � 0
y0 = 1

◮ Dual SDP : sos formulation

(D) :







f ∗N,grad := sup
γ∈R

γ

s.t.







f − γ = σ +
n∑

j=1

φj
∂f

∂xj

σ ∈
∑

(R[X ]N)2

φj ∈ R[X ]2N−d+1
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◮ Theorem 3

Under the assumption (H), the following holds :
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◮ Theorem 3

Under the assumption (H), the following holds :
◮ lim

N
f ∗N,grad = lim

N
f ∗N,mom = f ∗
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SDP relaxations

◮ Theorem 3

Under the assumption (H), the following holds :
◮ lim

N
f ∗N,grad = lim

N
f ∗N,mom = f ∗

◮ Igrad(f ) radical ⇒ ∃N0, f ∗N0,grad = f ∗N0,mom = f ∗
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SDP relaxations

◮ Theorem 3

Under the assumption (H), the following holds :
◮ lim

N
f ∗N,grad = lim

N
f ∗N,mom = f ∗

◮ Igrad(f ) radical ⇒ ∃N0, f ∗N0,grad = f ∗N0,mom = f ∗

◮ Extracting solutions
In practice, Lasserre and Henrion’s technique :
If, for some N, and some optimal primal solution y∗, we
have

rank MN(y∗) = rank MN−d/2(y
∗)

then we have reached the global minimum f ∗, and one
can extract global minimizers (implemented in
Gloptipoly).
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