{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{PSTYLE "Normal " -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 4 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 2 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Outpu t" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 } 3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE " " -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Norma l" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 257 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 1 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 258 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT -1 0 "" }}{PARA 257 "" 0 "" {TEXT -1 22 "Stage Maple Agr\351gation" }}{PARA 257 "" 0 "" {TEXT -1 12 "ENS Ker Lann" }}{PARA 258 "" 0 "" {TEXT -1 13 "Richard Leroy" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 10 " Dichotomie" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 246 "dicho:=proc(f ,a,b,N)\nlocal a1,b1,c1,Pa,Pb,Pc,i;\na1:=a; b1:=b;\nfor i to N do\n \+ c1:=(a1+b1)/2;\n Pa:=subs(x=a1,f); Pb:=subs(x=b1,f); Pc:=subs(x=c1,f );\n if (Pa*Pc <= 0)\n then b1:=c1;\n else a1:=c1;\n \+ fi;\n od;\nRETURN([a1,b1]);\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "f:=x**4-3*x**2+x-5;" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%\"fG,**$)%\"xG\"\"%\"\"\"F**&\"\"$F*)F(\"\"#F*!\"\"F(F*\"\"&F/" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "plot(f,x=-2..2);" }}{PARA 13 "" 1 "" {GLPLOT2D 613 613 613 {PLOTDATA 2 "6%-%'CURVESG6$7\\o7$$!\" #\"\"!$!\"$F*7$$!3ymmm\"p0k&>!#<$!3a[9o.8/*y$F07$$!3MLLL$Q6G\">F0$!3a1 SvP$*=-XF07$$!31++v3-)[(=F0$!3%*32G:n%R1&F07$$!3bmm;M!\\p$=F0$!3-qn'R2 UOd&F07$$!3#)***\\7Y\"H%z\"F0$!3i()>%fjtw3'F07$$!3MLLL))Qj^LC_G0%)F07$$!3 ymm;a[bw8F0$!39^2Dkigq%)F07$$!3SLL$3WDTL\"F0$!3ewHVTmy0&)F07$$!3umm;*4 K=H\"F0$!3RQ9/s%GL^)F07$$!35++]d(Q&\\7F0$!3)\\tC+Hvd\\)F07$$!3ZLL3d[.1 7F0$!3-pXgHB)F07$$!3w++++()>'***!#=$!3wTKsw\"f))*zF07$$!3E++++0\"*H\"*Fj q$!3,x[^*)*Q)=xF07$$!35++++83&H)Fjq$!3z7928,I?uF07$$!3\\LLL3k(p`(Fjq$! 3&GB;ms&=NrF07$$!3Anmmmj^NmFjq$!3yQ,>)=*e!z'F07$$!3)zmmmYh=(eFjq$!3GhX a9ju\"='F07$$!3commmCC(>%Fjq$!3p*z# *fD%>$!3$Qt /W[i%4^F07$$!3IqLLL$eV(>!#?$!3!Ri!f_g)>+&F07$$\"3)Qjmm\"f`@')Fbu$!3s1D ]a'Gg$\\F07$$\"3%z****\\nZ)H;Fjq$!3G:b)yo,g\"\\F07$$\"3ckmm;$y*eCFjq$! 35;r.$HV=$\\F07$$\"3f)******R^bJ$Fjq$!3UsS7\\p9')\\F07$$\"3'e*****\\5a `TFjq$!3Q$RKg$)Fjq$!3GU5uT+ZldF07$$\"3M*** ****pfa<*Fjq$!3'*4%Gp0Y$**eF07$$\"39HLLeg`!)**Fjq$!35%\\j*pA/)*fF07$$ \"3w****\\#G2A3\"F0$!3+Q#>+El'fgF07$$\"3Ymm\"H3XL7\"F0$!3Uv*\\`Hl*pgF0 7$$\"3;LLL$)G[k6F0$!35uqH()pykgF07$$\"3\\mm\"zM]v?\"F0$!3)efY#f0qSgF07 $$\"3#)****\\7yh]7F0$!3M:iiO/G&*fF07$$\"3GLLe**o4#H\"F0$!3P1pJpz;HfF07 $$\"3xmmm')fdL8F0$!3(Q(>f\"e.*QeF07$$\"3bmmm,FT=9F0$!3QB#fZA^&pbF07$$ \"3FLL$e#pa-:F0$!3)[6=qpBM<&F07$$\"3!*******Rv&)z:F0$!3!G]oGOE#yYF07$$ \"3ILLLGUYo;F0$!3Um.4hHYLRF07$$\"3\"*****\\n'*33F07$$\"33+++S2ls=F0$!3K4(y1c>+N\"F07$$\"34++]2 %)38>F0$!3&>=LoUArr'Fjq7$$\"3/++v.Uac>F0$\"3E33S!y=VE\"Fjq7$$\"\"#F*$ \"\"\"F*-%'COLOURG6&%$RGBG$\"#5!\"\"$F*F*F]`l-%+AXESLABELSG6$Q\"x6\"Q! Fb`l-%%VIEWG6$;F(Fb_l%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "dicho(f,1.8,2,10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #7$$\"+)o/)\\>!\"*$\"++++]>F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "realroot(f,0.0001);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$7$#\"&Z >$\"&%Q;#\"%()z\"%'4%7$#!&,]$F'#!%vV\"%[?" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 9 "evalf(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$7$$\" +P,*)\\>!\"*$\"+s6&*\\>F'7$$!+/:HO@F'$!+p/BO@F'" }}}}{SECT 1 {PARA 3 " " 0 "" {TEXT -1 17 "M\351thode de Newton" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 263 "newton:=proc(f,x0,epsilon)\nlocal L,fx,y,z,i,N,max,t ;\nmax:=10;\nL:=[x0];\nfx:=diff(f,x);\ny:=x0;\nN:=1;\nt:=epsilon+1:\nw hile N=epsilon do\n z:=evalf(y-subs(\{x=y\},f)/subs(\{x=y \},fx));\n L:=[op(L),z];\n t:=abs(y-z);\n y:=z;\n N:=N+1;\n \+ od;\nRETURN(L);\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "Q: =x^4+x^3-23*x^2+3*x+90;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"QG,,*$) %\"xG\"\"%\"\"\"F**$)F(\"\"$F*F**&\"#BF*)F(\"\"#F*!\"\"*&F-F*F(F*F*\"# !*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "newton(Q,-7,0.001); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7(!\"($!+*)))))))e!\"*$!+ommm_F'$! +YM+M]F'$!+@gl+]F'$!+]-++]F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "S:=(x-1)^2:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "newton (S,1.0000001,0.000000001);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7,$\"),+ +5!\"($\"+]+++5!\"*$\"+D+++5F)$\"+7+++5F)$\"+1+++5F)$\"+.+++5F)$\"+-++ +5F)$\"+,+++5F)$\"+++++5F)$\"\"\"%*undefinedG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 233 "newtongraph := proc(f,b,n)\nlocal a,i,s,t,y :\n a := (op(1,b)+op(2,b))/2 :\ns := NULL :\nfor i from 2 to n do\ny := su bs(\{x=a\},f) : t := subs(\{x=a\},diff(f,x)) :\ns := s,y+t*(x - a) :\n a := a - y/t\nod :\nplot([f,s],x=b,color=[red,blue$n])\nend;" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%,newtongraphGf*6%%\"fG%\"bG%\"nG6'%\"aG%\" iG%\"sG%\"tG%\"yG6\"F0C&>8$,&*&#\"\"\"\"\"#F7-%#opG6$F79%F7F7*&F6F7-F: 6$F8F8&%%NULLG?(8%F8F79&%%trueGC&>8(-%%subsG6$<#/%\"xGF39$>8'-FK 6$FM-%%diffG6$FPFO>FA6$FA,&FIF7*&FRF7,&FOF7F3!\"\"F7F7>F3,&F3F7*&FIF7F RFgnFgn-%%plotG6%7$FPFA/FOF " 0 "" {MPLTEXT 1 0 24 "newtongraph(Q,-7..-4,4); " }}{PARA 13 "" 1 "" {GLPLOT2D 613 613 613 {PLOTDATA 2 "6(-%'CURVESG6$ 7S7$$!\"(\"\"!$\"%+5F*7$$!3&*****\\P&3Y$p!#<$\"34:#[Aj\"4A%*!#:7$$!3O+ ]ivxs'*yF37$$!3u**\\7V0@&o'F0$\"3V.E$3\">I1uF37$$!3I+ ]i&exdi'F0$\"31G\"Q]`]\"opF37$$!3u**\\i+#QUc'F0$\"3*4@%R-Q)3`'F37$$!3b **\\i!3%f+lF0$\"3iEWs*fae4'F37$$!3N+]7oS:PkF0$\"3OMka_hBzcF37$$!31++]< #)*=P'F0$\"3'=50cq:!o_F37$$!3L++vG3U9jF0$\"3$3_i(e,/?\\F37$$!31++]-\\r \\iF0$\"3aR!e17')Qa%F37$$!3!*****\\(GVZ='F0$\"39XA\"Q*\\T#=%F37$$!3i** **\\(4J@7'F0$\"3%oP4:c*3\\QF37$$!3M+]iIKFlgF0$\"3ue)fe\\t)eNF37$$!3)** ***\\FPm(*fF0$\"3b\"[Q!Hb')GKF37$$!3V+++5'*QSfF0$\"3sB)H]HG='HF37$$!3Y +]i&>mP(eF0$\"3')pdKV3HlEF37$$!34+++&=$z9eF0$\"3$4c(yK=9:CF37$$!3;+]iX /4]dF0$\"3ovQ3bkn`@F37$$!39+](o8y%)o&F0$\"3n(*R2F=,<>F37$$!3N++Dc@>CcF 0$\"3!)orWuPa#o\"F37$$!3o**\\7ev:lbF0$\"3[X_*)3;:y9F37$$!3e***\\(o2[,b F0$\"3MdDnk!)4p7F37$$!3-+]i![Q`V&F0$\"3I18*f)p9k5F37$$!3[+]PC9wx`F0$\" 3ge)Q&eAwb*)!#;7$$!3\\***\\iiwbJ&F0$\"3i:5W,$o^B(F[t7$$!3))*****\\kL8D &F0$\"3;wJp$\\eOc&F[t7$$!33++D@W[)=&F0$\"3N-`sV_kHSF[t7$$!3-+]ilXnF^F0 $\"3xeSR19!zj#F[t7$$!3#)***\\()eb,1&F0$\"3!>mqofJf>\"F[t7$$!3?+++&y'[* *\\F0$!3/l!**GHy2&)*!#>7$$!3R++]())4Z$\\F0$!3_*fn@#F[t7$$!3$)****\\A0%=\"[F0$!34)e%yz*o'GKF[t7$$!3?+] i&zf9v%F0$!3'zuh*4=\"*3TF[t7$$!3]**\\7QXM)o%F0$!3SKdL.)4D&\\F[t7$$!3d+ +]PyjEYF0$!3A)ziJIEUq&F[t7$$!39+]iSm.iXF0$!3'QdQg]OlT'F[t7$$!3E+++5!=) *\\%F0$!3F'=PZ(e&H.(F[t7$$!3(****\\PZ!>OWF0$!3mOL_b_H&f(F[t7$$!3#)**\\ i0)*3tVF0$!3Sly>A$zv3)F[t7$$!3')*****\\%o5:VF0$!3m\\0m<]n%[)F[t7$$!3#* ***\\(G=l[UF0$!3uQ6-g$Rs())F[t7$$!3++++qO@*=%F0$!3c%3<'o2(R<*F[t7$$!3$ ***\\i&>Se7%F0$!3')3=&eCBhV*F[t7$$!3]**\\P%p$=lSF0$!3Dx89@'ynj*F[t7$$! \"%F*$!#)*F*-%'COLOURG6&%$RGBG$\"*++++\"!\")$F*F*Fb[l-F$6$7S7$F($\"3++ +++]iXgF37$F.$\"33]7G8(*=PeF37$F5$\"3')*o/[GJel&F37$F:$\"3%>(oHkZ(=X&F 37$F?$\"3UD\"yvGmlC&F37$FD$\"3*)Q4@1OBU]F37$FI$\"3A)ozT0\"z_[F37$FN$\" 3/'=#\\kUjcYF37$FS$\"31%=#*>joPX%F37$FX$\"3%)Q%[@f`:D%F37$Fgn$\"3V]7Go 0bVSF37$F\\o$\"33F1k\"RT.'QF37$Fao$\"3w](=S&R Z()F[t7$F]t$\"3IL(=<'\\DlnF[t7$Fbt$\"3Y$*\\PM*4vr%F[t7$Fgt$\"3sZPMF4>9 FF[t7$F\\u$\"3O$ooHzn(exF07$Fau$!3'Hw$f31Hw8F[t7$Ffu$!3Z()\\7G(3,J$F[t 7$F\\v$!3_$\\PfLs[P&F[t7$Fav$!3?;\"G)[]&eC(F[t7$Ffv$!3e+DJXLL\"H*F[t7$ F[w$!3p6`W,pf@6F37$F`w$!3ijls%ywFK\"F37$Few$!3l[(oH*oY>:F37$Fjw$!3%4\" y+3KQDF37$Fdx$!37v=#\\'y^E@F37$Fix$!3M8.dW7lFBF 37$F^y$!3y*\\i:$>Z7DF37$Fcy$!3%fPfeH(HCFF37$Fhy$!3w**\\(oUcP\"HF37$F]z $!3B7`Ww$fd6$F37$Fbz$!3-*ozT(>54LF37$Fgz$!3+++++](o^$F3-F\\[l6&F^[lFb[ lFb[lF_[l-F$6$7S7$F($\"3VI'HtX7GI%F37$F.$\"3%)z#)>DSshTF37$F5$\"3.RlzM P'*QSF37$F:$\"3J1=9\\p!4!RF37$F?$\"3UCe\\L]$>w$F37$FD$\"35v,)3O#GF37$Fao$\"3ow$p1[** Ro#F37$Ffo$\"38%3,.\"p\"Qa#F37$F[p$\"3O.EbG]s3CF37$F`p$\"3'>U\"*yl[gG# F37$Fep$\"3FoEm(eu,9#F37$Fjp$\"3*>iXe6+m,#F37$F_q$\"3#=ayyi`G(=F37$Fdq $\"3/QE7HOhXvl6'p5F37$Fbs$\"3qW8rhC. p#*F[t7$Fgs$\"3N`1vX:vE!)F[t7$F]t$\"3)>C:J7a]o'F[t7$Fbt$\"3qXcM+%\\*)H &F[t7$Fgt$\"3h-BY\\j\"H%RF[t7$F\\u$\"3ztA\"ok%)3j#F[t7$Fau$\"3'[(4IOr4 u6F[t7$Ffu$!33HVN^B\"*[8F07$F\\v$!3*\\M<'>d^K:F[t7$Fav$!3/m.SI7(*)z#F[ t7$Ffv$!3MKDU=;a$=%F[t7$F[w$!3[$)yX^WJ'[&F[t7$F`w$!3O&))3*Qu3[oF[t7$Fe w$!3!fh#eV%p%z\")F[t7$Fjw$!3E1PT;IIt&*F[t7$F_x$!3kr*43/t:4\"F37$Fdx$!3 z(H=2jb)G7F37$Fix$!3%))pp9X,]O\"F37$F^y$!3UyA=@`5!\\\"F37$Fcy$!31]t$QZ )[L;F37$Fhy$!3[=]&[2Ka@/!HF 37$FX$\"3A71VC+!yx#F37$Fgn$\"3S&4D:so;l#F37$F\\o$\"34=7F,AdSDF37$Fao$ \"3\\1YgKQ]:CF37$Ffo$\"3]F**>@>#**G#F37$F[p$\"3#Q?*zz/!*o@F37$F`p$\"3= kg%pT,!f?F37$Fep$\"3$*Q([:!3KG>F37$Fjp$\"3#[m-*yrh<=F37$F_q$\"3%RQ'H[D %))o\"F37$Fdq$\"3-!R)=!=b[d\"F37$Fiq$\"3_UzMrHz\\9F37$F^r$\"36*p&*QEp*F [t7$Fbs$\"325F,jC<9%)F[t7$Fgs$\"3SJ5!Q\"3G,tF[t7$F]t$\"3G)R*)RMF$*4'F[ t7$Fbt$\"3oUBW)z\"fd[F[t7$Fgt$\"3>Y$\\>#ezUOF[t7$F\\u$\"3%f.Z5D=uY#F[t 7$Fau$\"3q\\*\\\\&=Oi6F[t7$Ffu$!3Uio8nh$*G5!#=7$F\\v$!3Es^!G$[Mi7F[t7$ Fav$!3W6`o\"=$*oR#F[t7$Ffv$!3SL/]+UDPOF[t7$F[w$!3:E4hbsL/[F[t7$F`w$!3n 7\")*yKvU-'F[t7$Few$!3vEq$zx()p@(F[t7$Fjw$!3qI4Hyrkl%)F[t7$F_x$!3!Ht@v ea#o'*F[t7$Fdx$!3c,(*)fV4)*3\"F37$Fix$!3OJC!Q/v<@\"F37$F^y$!3v=V_q([QK \"F37$Fcy$!3st6')3zH_9F37$Fhy$!3a^HW\\V=n:F37$F]z$!3gA2Adsn*o\"F37$Fbz $!3-.pq*f=p!=F37$Fgz$!3\")z0rL/\"H$>F3Fidl-%+AXESLABELSG6$Q\"x6\"Q!F\\ hm-%%VIEWG6$;F(Fgz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" "Curve 3" "Curve 4" }}}}} {SECT 1 {PARA 3 "" 0 "" {TEXT -1 16 "Sch\351ma de Horner" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "Q;" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#,,*$)%\"xG\"\"%\"\"\"F(*$)F&\"\"$F(F(*&\"#BF()F&\"\"#F(!\"\"*&F+F(F& F(F(\"#!*F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "convert(Q,ho rner,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&\"#!*\"\"\"*&,&\"\"$F%*& ,&\"#B!\"\"*&,&%\"xGF%F%F%F%F/F%F%F%F/F%F%F%F/F%F%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "expand(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,,*$)%\"xG\"\"%\"\"\"F(*$)F&\"\"$F(F(*&\"#BF()F&\"\"#F(!\"\"*&F+F(F &F(F(\"#!*F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 139 "horner:=pr oc(P,b)\nlocal r,d,i;\nd:=degree(P,x);\nr:=coeff(P,x,d);\nfor i from d -1 to 0 by -1 do\n r:=r*b+coeff(P,x,i);\n od;\nRETURN(r);\nend;" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'hornerGf*6$%\"PG%\"bG6%%\"rG%\"dG% \"iG6\"F-C&>8%-%'degreeG6$9$%\"xG>8$-%&coeffG6%F4F5F0?(8&,&F0\"\"\"F>! \"\"F?\"\"!%%trueG>F7,&*&F7F>9%F>F>-F96%F4F5F-%'RETURNG6#F7F-F-F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "horner(Q,-5); subs(x=-5,Q );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "st: =time():horner(Q,-9*10**99999):time()-st;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"%CD!\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "st:=time():subs(\{x=-9*10**99999\},Q):time()-st;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"%&H$!\"$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 " " }}{PARA 0 "" 0 "" {TEXT -1 114 "Il faut 2d-1 multiplications pour un e m\351thode na\357ve et d pour la m\351thode de Horner, o\371 d est l e degr\351 du polyn\364me." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 18 "R\350gle de Descartes" }}{SECT 1 {PARA 3 "" 0 "" {TEXT 256 18 "R\350gle de Descartes" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "R:=x^4-x^3-3*x+90;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"RG,**$)%\"xG\"\"%\"\"\"F**$)F(\"\"$F*!\"\"*&F-F*F(F*F.\"#!*F *" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "coeffs(R);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6&\"#!*!\"$\"\"\"!\"\"" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 2 "Q;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,,*$)%\"x G\"\"%\"\"\"F(*$)F&\"\"$F(F(*&\"#BF()F&\"\"#F(!\"\"*&F+F(F&F(F(\"#!*F( " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "coeffs(Q);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6'\"#!*\"\"$\"\"\"!#BF%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 142 "v ariation:=proc(P)\nlocal l,L,res:\nres:=[]:\nL:=[seq(coeff(P,x,i),i=0. .degree(P))]:\nfor l in L do\nif l <> 0 then res:=[op(res),l]:\nfi:\no d:\nend;\n" }{XPPMATH 20 "6#>%*variationGf*6#%\"PG6%%\"lG%\"LG%$resG6 \"F,C%>8&7\">8%7#-%$seqG6$-%&coeffG6%9$%\"xG%\"iG/F<;\"\"!-%'degreeG6# F:?&8$F2%%trueG@$0FDF?>F/7$-%#opG6#F/FDF,F,F," }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%*variationGf*6#%\"PG6%%\"lG%\"LG%$resG6\"F,C%>8&7\">8 %7#-%$seqG6$-%&coeffG6%9$%\"xG%\"iG/F<;\"\"!-%'degreeG6#F:?&8$F2%%true G@$0FDF?>F/7$-%#opG6#F/FDF,F,F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 180 "descartes:=proc(L)\nlocal n:\nn:=nops(L):\nif n = 1 then RETU RN(0):\nelse\nif sign(L[n-1]*L[n]) = -1 then RETURN(descartes(L[1..n-1 ])+1):\nelse RETURN(descartes(L[1..n-1])):\nfi:\nfi:\nend;" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%*descartesGf*6#%\"LG6#%\"nG6\"F*C$>8$-%%no psG6#9$@%/F-\"\"\"-%'RETURNG6#\"\"!@%/-%%signG6#*&&F16#,&F-F4F4!\"\"F4 &F16#F-F4FB-F66#,&-F$6#&F16#;F4FAF4F4F4-F66#FHF*F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "R;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,**$ )%\"xG\"\"%\"\"\"F(*$)F&\"\"$F(!\"\"*&F+F(F&F(F,\"#!*F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "variation(R);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7&\"#!*!\"$!\"\"\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "descartes(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\" #" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "Q;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,,*$)%\"xG\"\"%\"\"\"F(*$)F&\"\"$F(F(*&\"#BF()F&\"\"#F( !\"\"*&F+F(F&F(F(\"#!*F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "variation(Q);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7'\"#!*\"\"$!#B\"\" \"F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "descartes(%);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"#" }}}}{SECT 1 {PARA 4 "" 0 "" {TEXT -1 41 "Application : matrices d\351finies positives" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#7^r%.BlockDiagonalG%,GramSchmidtG%,JordanBlockG%)LUdeco mpG%)QRdecompG%*WronskianG%'addcolG%'addrowG%$adjG%(adjointG%&angleG%( augmentG%(backsubG%%bandG%&basisG%'bezoutG%,blockmatrixG%(charmatG%)ch arpolyG%)choleskyG%$colG%'coldimG%)colspaceG%(colspanG%*companionG%'co ncatG%%condG%)copyintoG%*crossprodG%%curlG%)definiteG%(delcolsG%(delro wsG%$detG%%diagG%(divergeG%(dotprodG%*eigenvalsG%,eigenvaluesG%-eigenv ectorsG%+eigenvectsG%,entermatrixG%&equalG%,exponentialG%'extendG%,ffg ausselimG%*fibonacciG%+forwardsubG%*frobeniusG%*gausselimG%*gaussjordG %(geneqnsG%*genmatrixG%%gradG%)hadamardG%(hermiteG%(hessianG%(hilbertG %+htransposeG%)ihermiteG%*indexfuncG%*innerprodG%)intbasisG%(inverseG% 'ismithG%*issimilarG%'iszeroG%)jacobianG%'jordanG%'kernelG%*laplacianG %*leastsqrsG%)linsolveG%'mataddG%'matrixG%&minorG%(minpolyG%'mulcolG%' mulrowG%)multiplyG%%normG%*normalizeG%*nullspaceG%'orthogG%*permanentG %&pivotG%*potentialG%+randmatrixG%+randvectorG%%rankG%(ratformG%$rowG% 'rowdimG%)rowspaceG%(rowspanG%%rrefG%*scalarmulG%-singularvalsG%&smith G%,stackmatrixG%*submatrixG%*subvectorG%)sumbasisG%(swapcolG%(swaprowG %*sylvesterG%)toeplitzG%&traceG%*transposeG%,vandermondeG%*vecpotentG% (vectdimG%'vectorG%*wronskianG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 128 "dp:=proc(M)\nlocal P:\nP:=charpoly(M,x):\nif descartes(variat ion(P)) = degree(P) then RETURN(true):\nelse RETURN(false):\nfi:\nend; \n\n\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#dpGf*6#%\"MG6#%\"PG6\"F*C $>8$-%)charpolyG6$9$%\"xG@%/-%*descartesG6#-%*variationG6#F--%'degreeG F:-%'RETURNG6#%%trueG-F>6#%&falseGF*F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "A:=randmatrix(4, 4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'matrixG6#7&7&!#&)!#b!#P!#N7&\"#(*\"#]\"#z\"#c7&\"#\\\"#j\" #d!#f7&\"#X!\")!#$*\"##*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "M:=A+transpose(A);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"MG,&%\"AG\" \"\"-%'matrixG6#7&7&!#&)\"#(*\"#\\\"#X7&!#b\"#]\"#j!\")7&!#P\"#z\"#d!# $*7&!#N\"#c!#f\"##*F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "eva lm(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7&7&!$q\"\"#U\"# 7\"#57&F)\"$+\"\"$U\"\"#[7&F*F.\"$9\"!$_\"7&F+F/F2\"$%=" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "dp(M);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%&falseG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "evalf(eig envalues(M));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6&$\"+ch5z=!\"($\"++7E: KF%$!+(=(HX5F%$!+p,2p " 0 "" {MPLTEXT 1 0 20 "Diag:=diag(1,2,3,4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%DiagG-%'ma trixG6#7&7&\"\"\"\"\"!F+F+7&F+\"\"#F+F+7&F+F+\"\"$F+7&F+F+F+\"\"%" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "dp(Diag);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#%%trueG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}}}}{MARK "4" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }