{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Warning" -1 7 1 {CSTYLE "" -1 -1 "Courier " 1 10 0 0 255 1 2 2 2 2 2 1 1 1 3 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 80 "Warning , the protected names norm and trace have been redefined and unprotect ed\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 124 "Le but de ce TP est de p rogrammer l'algorithme du pivot de Gauss pour \351chelonner une famill e u_1,...,u_p de vecteurs de R^n." }}{PARA 0 "" 0 "" {TEXT -1 127 "On \+ codera les vecteurs par des listes ; ainsi, une famille de vecteurs se ra une liste de listes, comme dans l'exemple suivant :" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "u[1]:= [0,2,3];u[2]:=[0,5,6];u[3]:=[7,8,9];u[4]:=[10,11,12];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"uG6#\"\"\"7%\"\"!\"\"#\"\"$" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"uG6#\"\"#7%\"\"!\"\"&\"\"'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"uG6#\"\"$7%\"\"(\"\")\"\"*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"uG6#\"\"%7%\"#5\"#6\"#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "famille:=[u[1],u[2],u[3],u[4]];" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%(familleG7&7%\"\"!\"\"#\"\"$7%F'\"\"&\"\"'7%\"\"(\" \")\"\"*7%\"#5\"#6\"#7" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 50 "On manipule cette famille de la mani\350r e suivante :" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "famille[2];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7 %\"\"!\"\"&\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "famille [2][3];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 24 "Choi x d'un pivot non nul" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 241 "Ecrire une proc\351dure qui prend en entr\351e une famille de vecteurs, et qui donne en sortie, l'indice du premier \+ vecteur dont la premi\350re coordonn\351e est non nulle (la proc\351du re donnera 0 si tous les vecteurs ont leur premi\350re coordonn\351e n ulle)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {SECT 0 {PARA 3 "" 0 "" {TEXT -1 24 "Permutation des colonnes" }} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 200 "O n suppose qu'il existe au moins un vecteur dont la premi\350re composa nte est non nulle. La deuxi\350me \351tape de l'algorithme est de le p lacer en t\352te de liste ; cette composante est appel\351e premier pi vot." }}{PARA 0 "" 0 "" {TEXT -1 46 "La proc\351dure suivante r\351pon d \340 cette attente.\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 88 "permute:=proc(L)\nlocal i,res1,res2:\ni:=indice(L):\nconvert(swaprow(L,1,i),listlist);\nend; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(permuteGf*6#%\"LG6%%\"iG%%res1G %%res2G6\"F,C$>8$-%'indiceG6#9$-%(convertG6$-%(swaprowG6%F3\"\"\"F/%)l istlistGF,F,F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "permute(f amille);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7&7%\"\"(\"\")\"\"*7%\"\"! \"\"&\"\"'7%F)\"\"#\"\"$7%\"#5\"#6\"#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {SECT 0 {PARA 3 "" 0 "" {TEXT -1 46 "L'algorithme du pivot pour la pre mi\350re ligne :" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 207 "On suppose encore qu'il existe au moins un vecteur \+ dont la premi\350re composante est non nulle. On effectue maintenant l 'algorithme du pivot afin d'\351liminer les premi\350res composantes d es vecteurs u_2,...,u_p :" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {SECT 0 {PARA 3 "" 0 "" {TEXT -1 20 "L'algorithme g\351n\351ral" }} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 116 "Q uestion : programmer l'algorithme g\351n\351ral du pivot de Gauss. On \+ pourra utiliser pour cela les proc\351dures suivantes." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "collezero:=proc(L)\n[seq([0, op(j)],j=L)];\nend;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%*collezeroGf* 6#%\"LG6\"F(F(7#-%$seqG6$7$\"\"!-%#opG6#%\"jG/F29$F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "famille;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7&7%\"\"!\"\"#\"\"$7%F%\"\"&\"\"'7%\"\"(\"\")\"\"*7%\"# 5\"#6\"#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "collezero(fami lle);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7&7&\"\"!F%\"\"#\"\"$7&F%F%\" \"&\"\"'7&F%\"\"(\"\")\"\"*7&F%\"#5\"#6\"#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "coll epivot:=proc(v,L)\nlocal i,j,k,l,m:\n[v,op(L)];\nend;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%+collepivotGf*6$%\"vG%\"LG6'%\"iG%\"jG%\"kG%\"lG %\"mG6\"F/7$9$-%#opG6#9%F/F/F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "collepivot([alpha,beta,gamma,delta],famille);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7'7&%&alphaG%%betaG%&gammaG%&deltaG7%\"\"!\"\"#\" \"$7%F*\"\"&\"\"'7%\"\"(\"\")\"\"*7%\"#5\"#6\"#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "27" 0 } {VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }